掺钕磷酸盐玻璃光谱和发光特性的研究

胡 和 方 (中国科学院上海光机所)

Study on the spectroscopic and fluorescence characteristics of Nd-doped phosphate glasses

Hu Herfang

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Two series of Nd-doped glasses $\text{Li}_2\text{O} \cdot \text{BaO} \cdot \text{XP}_2\text{O}_5$ and $45\text{R}_{m}\text{O} \cdot 55\text{P}_2\text{O}_5$ where R is alkali or alkaline earth element, were prepared, and their absorption and fluorescence spectra were measured. Based on the Judd-Ofelt theoretical model, the effects of various oxides on the fluorescence properties of Nd-doped phosphate glasses were studied. It was shown that the spontaneous radiative transition probability of Nd³⁺ increases with the decreasing of field strength of cations.

一、前 言

掺钕磷酸盐玻璃具有高的 受激发射截 面,低的非线性折射率,在目前几种主要的 激光钕玻璃中其增益系数最大。在这种系统 中容易得到折射率温度系数为负值,应力热 光系数和应力双折射热光系数均极小的玻 璃。所以,掺钕磷酸盐玻璃被认为是高功率 激光系统最有希望的工作物质之一,并且已 用于大型高功率激光系统中^[1,2]。磷酸盐玻 璃热光性能好,阈值能量低,经过化学刚化的 掺钕磷酸盐玻璃还可作为重复频率中小功率 激光器的工作物质^[3],以这种玻璃为基质,研 制成功了低热畸变的激光玻璃^[4]。此外,掺高 浓度 Nd₂O₃ 的磷酸盐玻璃也被认为是微型激 光器有希望的工作物质^[5]。为此,国内外都 对掺钕磷酸盐玻璃进行了大量的研究,定型 了一批掺钕磷酸盐激光玻璃。

磷酸盐玻璃中 Nd^{3+} 离子发光特性的研 究早在 60 年代已进行了大量的工作^[6], 但大 部分工作只限于玻璃基质对发光寿命、荧光 强度、荧光峰值波长和半宽度的影响, 对磷 酸盐玻璃中 Nd^{3+} 离子的自发辐射几率及受 激发射截面的系统研究很少有公开报导。本 文系统研究了 P_2O_5 含量、碱金属和碱土金属 离子对磷酸盐玻璃中 Nd^{3+} 离子荧光峰 值波 长、半宽度、自发辐射跃迁几率和受激发射截 面等性质的影响,并对实验结果进行了一些 讨论。

二、实验方法

为了研究磷酸盐玻璃化学组成对 Nd³⁺ 离子光谱和发光特性的影响,我们应用 J—O _{收稿日期:} 1979 年2月2日。 理论模型。

计算固体中三价稀土离子电子能级间辐射跃迁几率的一种模型已由 B. R. Judd^[77]和 G. S. Ofelt^[8]所提出。根据这种模型,始态 $|(S, L)J\rangle$ 和终态 $|(S', L')J'\rangle$ 之间电偶极 跃迁的谱线强度 S 可用下式来表示;

土离子的 4fⁿ 电子组态所决定,而与稀土离 子的配位场无关; Ω_t 是表示配位场与屏蔽的 4fⁿ 电子组态相互作用的强度参量,隐含了奇 对称配位场项、径向积分和微扰分母,而与稀 土离子的 4fⁿ 电子组态无关。

电偶极跃迁谱线强度 S 可根据下式从积 分吸收的测定值 [K(λ)dλ 来求得:

$$\int K(\lambda)d\lambda = N_0 \frac{8\pi^3 e^2 \lambda}{3ch(2J+1)} \frac{(n^2+2)^2}{9n} S$$
(2)

式中 N_0 是单位体积内 Nd^{3+} 离子数, J 为始 态能级的内量子数; $\frac{(n^2+2)^2}{9n}$ 是电介质在劳 伦兹场中的修正系数, n 为折射率; e, c, λ, h 分别为电子的电荷、光速、波长和普朗克常数。

玻璃中 Nd³⁺ 离子的受激 *J* 簇之间的自 发辐射跃迁几率,可以根据用最小二乘方拟 合法所确定的强度参量 Ω_t 来计算。 从始态 $|(S', L')J'\rangle$ 到终态 $|(\overline{S}, \overline{L})\overline{J}\rangle$ 的自发辐射 跃迁几率为:

$$A[(S', L')J', (S, \bar{L})\bar{J}] = \frac{64\pi^4 e^2}{3h(2J'+1)\bar{\lambda}^3} n \left[\frac{(n^2+2)^2}{9}\right] \times \sum_{t=2,4,6} \Omega_t |\langle (S', L')J' \| U^{(t)} \| (\bar{S}, \bar{L})\bar{J} \rangle|^2$$
(3)

从一特定始态 |(*S'*, *L'*)*J'*> 出发的跃 迁的荧光分支比定义为:

• 24 •

$$\beta[(S', L')J'; (\bar{S}, \bar{L})\bar{J}] = \frac{A[(S', L')]J'; (\bar{S}, \bar{L})\bar{J}]}{\sum_{\bar{S}, L, J} A[(S', L')J'; (\bar{S}, \bar{L})\bar{J}]}$$
(4)

这总数是对所有可能的终态能级求和。此和 *A*^a表示初始能级总的自发辐射跃迁几率,其 倒数为辐射寿命:

$$\begin{aligned} \tau_0 &= \{\sum_{\overline{S}, \overline{L}, \overline{J}} A[(S', L')J'; (\overline{S}, \overline{L})\overline{J}]\}^{-1} \\ &= A_{\underline{s}}^{-1} \end{aligned} \tag{5}$$

|(S', L')J'>能级的辐射量子效率为:

$$\eta_c = \tau_m / \tau_0 \tag{6}$$

式中 Tm 为荧光寿命的测定值。

Nd³⁺ 离子 ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ 跃迁的受激发 射截面 σ_{P} 可由下式求得:

$$\sigma_{P} = \frac{\lambda_{P}^{4}}{8\pi cn^{2}} \frac{A \left[{}^{4}F_{3/2}; {}^{4}I_{11/2}\right]}{\Delta \lambda_{fig}}$$
(7)

式中 λ_P 是⁴ $F_{3/2} \rightarrow$ ⁴ $I_{11/2}$ 跃迁的中心波长, $\Delta \lambda_{nx}$ 是该荧光谱线的有效宽度。

我们选择了以下二组玻璃进行研究: 45R_mO·55P₂O₅和Li₂O·2BaO·XP₂O₅,其中 R为Li Na K Mg Ca Sr Ba Zn Cd. Pb, 玻璃中 Nd₂O₃ 含量为 0.5 分子 %。分别 以磷酸二氢盐、氧化物、碳酸盐和 P2O5 作原 料,用刚玉坩埚在硅碳棒电炉中进行熔炼,澄 清温度为1100~1200°C,在澄清温度下通氧 半小时左右,以利澄清和减少玻璃中水的含 量。通氧后玻璃再用铂搅拌器进行充分搅拌。 退火后玻璃磨成厚 5~8 毫米, 15×30 毫米 二大面抛光的样品,在 SP-700 分光光度计 上测定其吸收光谱, 在1米光栅光谱仪测定 其⁴F_{3/2}—⁴I_{11/2} 跃迁的荧光光谱,荧光中心 波长测定精度为5埃。从吸收光谱用最小二 乘方拟合法用电子计算机求出强度参量 Ω_t , 并用它计算了自发辐射跃迁几率及其它光谱 性质。计算强度参量 Ω_t 时采用的 $\langle U^{(t)} \rangle$ 值 是根据文献[9,10]中的值。

三、实验结果

试验的二组玻璃的吸收和发光性质的测 定和计算结果列于表 1~2 和图 1~4 中。由 表可见:

the second s
11-2
TLin
Beter
.N
30
-
NX
5
TT.
The second
1×
112
Er-)
THES
F/
AN
212
241
V.
100
+DX
12
1
17
-
100
TI_
T
-
5
111
1
2
NX
5
And a
h
Sh'
M
NIT
.NIT
NI
No
laca
144
Product of
200
+
60
-
.0
14
1000
-
-
-
Inter
1201
TH
Pr-1
+HX
H
TRAKE.
来下
FAL
1000

面

	玻璃线	且成(分子	(%)		⁴ I _{9/2}	->4G7/2 ²	K _{13/2}	4I _{9/}	$_{2} \rightarrow ^{2}G_{11/2}$	4G5/2	4I _{9/}	$_2 \rightarrow {}^4E_{7/2}$	⁴ S _{3/2}	5	$^{4}I_{9/2} \rightarrow ^{4}F_{1}$	/2
能	Li2O	BaO	P_2O_5	пD	λ_A (m μ)	Δh_A (m μ)	σ_A (10 ⁻²⁰ cm ²)	λ_A (m μ)	$\Delta \lambda_A$ (m μ)	σ_A (10 ⁻²⁰ cm ²)	λ_A (m μ)	$\Delta \lambda_A$ (m μ)	$\frac{\sigma_A}{(10^{-20} \mathrm{cm}^2)}$	λ_A (m μ)	Δh_A (m μ)	σ_A (10 ⁻²⁰ cm ²)
1	20	40	40	1.5997	522	9.1	0.84	578	17.6	2.42	739	21.2	1.43	866	24.2	0.48
C3	18.33	36.67	45	1.5845	521	8.5	0.87	578	17.4	2.47	739	21.3	1.43	864	24.0	0.45
67	16.67	33.33	50	1.5700	521	8.7	0.84	578	17.7	2.39	738	21.0	1.39	864	25.0	0.45
4	13	26	61	1.5481	521	8.6	0.83	579	16.7	2.61	740	19.9	1.48	865	25.0	0.45
ณ	11	22	29	1.5395	521	8.0	0.88	579	15.5	2.72	740	19.5	1.58	863	23.2	0.48
9	6	18	73	1.5350	520	8.6	0.93	577	15.4	2.71	738	19.2	1.63	862	24.1	0.52
7	7	14	62	1.5320	521	8.6	. 66*0	578	15.1	2.71	740	19.7	1.74	864	24.9	0.54
80	45		55	1.5155	521	8.7	0.88	578	16.6	2.69	740	20.5	1.46	866	25.3	0.48
6	Na ₂ 045		55	1.4916	521	9.1*	0.93	578	16.7	2.79	740	20.9	1.55	864	24.1	0.52
10	MgO 45		55	1.5006	522	10.8	0.71	579	19.6	3.12	739	21.8	1.13	868	27.7	0.36
11	CaO 45		55	1.5393	522	10.3	0.72	579	19.0	2.61	740	21.1	1.26	869	27.0	0.40
12	SrO 45		55	1.5546	521	11.0	0.78	578	18.6	2.67	739	21.4	1.31	865	26.8	0.42
13	BaO 45		55	1.5767	521	9.1	0.83	579	18.8	2.63,		20.5	1.40	867	27.1	0.44
14	ZnO 45		55	1.5237	522	9.1	0.74	57.9	18.7	2.94	738	19.2	1.31	866	23.7	0.41
15	CdO 45		55	1.5924	521	9.1	0.76	579	18.2	2.67	739	20.1	1.32	867	25.3	0.42
16	Pb0 45		55	1.6922	522	0.6	0.90	579	15.9	2.73	740	19.8	1.59	865	25.4	0.50
17	K20 45		55													

. 25 -

强度	参量(10-20	厘米2)	A0.88	A1.06	祖族	T0	Tm	山心有效	A	0 ¹ ,06
	Q4	Ω6	(和-1)	(秒 ⁻¹)	(和-1)	(微秒)	- (微秒)	(毫微米)	(毫微米)	(10-20 厘米2)
	3.16	4.25	945	1222	2431	411	315	28.2	1056.5	2.834
	2.93	4.35	872	1189	2323	431	295	28.0	1055.5	2.831
	3.11	4.20	876	1135	2256	443	280	26.7	1054.5	2.886
	3.10	4.28	840	1096	2176	460	230	25.2	1053.0	3.038
1	3.05	4.55	828	1133	2211	452	110	23.9	1052.0	3.349
100	3.65	4.62	943	1179	2374	421	85	23.0	1051.0	3.641
	3.96	5.06	1019	1280	2574	389	60	22.3	1051.0	4.100
1	3.55	4.46	879	1094	2206	453	250	27.0	1054.0	2.953
	3.79	4.92	006	1141	2287	437	275	23.6	1053.5	3.638
1 4 1 2 5 1 1	2.87	3.73	696	882	1768	566	330	33.2	1055.5	1.976
	3.08	3.91	804	1005	2024	494	290	29.6	1054.0	2.400
	3.48	4.08	920	1102	2252	444	300	28.8	1053.5	2.650
11	3.32	4.10	930	1145	2318	431	300	26.5	1054.0	2.909
	2.63	3.74	683	910	1792	558	300	27.3	1053.0	2.402
	2.84	3.74	833	1065	2128	470	255	28.1	1053.5	2.502
15713	3.30	4.09	1165	1439	2910	344	170	24.8	1054.0	3.393
							325	24.2	1054.0	

表2 Nd³⁺ 离子在磷玻璃中的荧光性质

场强的关系

1. 随玻璃中 P_2O_5 含量的增加, Nd^{3+} 离 子 ${}^{4}F_{3/2}$ — ${}^{4}I_{11/2}$ 荧光跃迁的峰值波长向短波 段移动, 荧光半宽度明显变窄。当 P_2O_5 含量 在 40~60 分子 % 范围内, Nd^{3+} 离子的吸收 截面的变化不大, 但当 P_2O_5 含量超过 60% 时, 随 P_2O_5 含量的增加, Nd^{3+} 离子的吸收截 面明显增大。强度参量 Ω_t 随 P_2O_5 含量的变 化趋势与吸收截面的变化趋势相类似。

2. 由于玻璃的折射率随 P_2O_5 含量的增加而下降,因此玻璃的自发辐射跃迁几率与 P_2O_5 含量关系出现马鞍形的变化趋势(见图 2),自发辐射跃迁几率先随 P_2O_5 含量的增加而降低,在 P_2O_5 含量为 60% 附近出现极小值,以后又随 P_2O_5 含量的增加明显增加。 Nd^{3+} 离子 ${}^4F_{3/2}-{}^4I_{11/2}$ 跃迁的受激发射截面的变化趋势也与吸收截面相类似。

随碱金属离子半径的增大,Nd³⁺离子各吸收带的吸收截面、自发辐射跃迁几率和受激发射截面都明显增大,荧光线宽变窄,强度参量 Q_t也增大。

随碱土金属离子半径的增大, Nd³⁺离子 ⁴ $I_{9/2}$ —⁴ $G_{5/2}$ (² $G_{7/2}$) 跃迁的吸收截面 减 小 而 近红外几个跃迁的吸收截面增大, 反映在强 度参量 Ω_t 上,随 R²⁺离子半径的增大, Ω_2 减 小, Ω_4 和 Ω_6 增大。

在同一周期中,碱金属磷酸盐玻璃中的 自发辐射跃迁几率和受激发射截面比碱土金 属的大,含 IIA 族元素的自发辐射几率比含 IIB 族元素的大。

磷酸盐玻璃的结构已作了大量研究,通 常认为[11]: 磷酸盐玻璃的结构网络是由[PO4] 四面体所组成,由于 [PO4] 四面体中有一个 双键氧,而使四面体中一个顶点断裂并变形。 因此玻璃态 P2O5 的结构应该类似二硅酸钠, 是层状结构, 而在玻璃态 P2O5 中添加碱金 属、碱土金属氧化物,按其离子性质的不同可 起不同的作用, MgO 和 ZnO 的加入将形成 [ZnO4] 和 [MgO4] 四面体进入结构网络, 使 玻璃的聚合程度增加, K2O、Na2O、Li2O、 BaO 等加入使 P-O 键断裂, [PO4] 四面体 的聚合程度降低,非桥氧离子数增加。在磷 酸盐玻璃中引入其它二价金属氧化物,一方 面破坏 P-O 键间的连接, 另一方面阳离子 处于空隙中又形成亚键,有助于增加 [PO4] 四面体的聚合程度,形成亚键的能力决定于 阳离子与氧离子间键力大小。随离子 R²⁺ 半 径减小,离子位移极化下降,在玻璃中阳离子 更牢固地被固定住。

[PO₄]四面体中的双键氧严格地说是由 一个从 P 到 O 的 σ 配键和二个由 O 到 P 的 d—p π 键所组成^[12], d—p π 键是很弱的键, 很容易受到邻近配位场的影响,与掺钕硅酸 盐玻璃相比,在磷酸盐玻璃中,基质对激活离 子的作用有可能要比硅酸盐玻璃强,而且受 到网络外体离子的影响也较大。图 3 表示了 磷酸盐玻璃中 Nd⁸⁺ 离子 1.06 微米附近荧光 跃迁的自发辐射跃迁几率与碱金属、碱土金 属离子的场强之间的关系,随碱金属、碱土金 属场强的减小,与其氧离子之间的共价键因 素减弱,而 Nd³⁺—O⁻²离子间的相互作用则相 对增加,使其自发辐射跃迁几率增大。含 PbO 玻璃因折射率要比其它玻璃高得多,所以具 有更高的自发辐射跃迁几率。可见磷酸盐玻 璃中网络外体离子对 Nd³⁺ 离子的光谱和发 光特性的影响要比锂硅酸盐玻璃⁽¹³⁾ 中影响 更为明显。

图 4 表示玻璃组成与1.06 微米 附 近 荧 光线宽的关系。从图可见,含场强小的网络 外体离子其荧光线宽较窄,这也说明了这些 离子对磷酸盐玻璃中 Nd³⁺离子配位场的影 响很小。随场强增加,荧光线宽增大,碱金 属、碱土金属氧化物分别在不同的直线上。而 含 Mg⁺⁺和 Zn⁺⁺的玻璃其荧光线宽与直线 有较大的偏离很可能与这些离子形成[MgO₄] 和 [ZnO₄] 进入玻璃结构网络,改变了 Nd³⁺ 离子配位场有关。

参考文献

- [1] J. Nuckalls; Opt. Commun., 1976, 18, No. 1, 97.
- [2] Electronics, 1977, 50, No. 13, 79.
- [3] J. D. Meycro; Opt. Spect., 1977, No. 5, 34.
- [4] О.С. Шавелев, В. А. Бабкина; ОМП, 1976, №7, 32.
- [5] Ю. К. Воронько и др.; ДАН СССР, 1976, 227, №1, 75.
- [6] O. K. Deutschdein; Rev. Phys. Appliqueé, 1967, 2, No. 1, 29.
- [7] B. R. Judd; Phys. Rev., 1962, 127, No. 3, 755.
- [8] G. S. Ofelt; J. Chem. Phys., 1962, 37, No. 3, 511.
- [9] W. T. Carnall et al.; J. Chem. Phys., 1968, 49, No. 10, 4424.
- [10] W. F. Krupke; *IEEE J. Quant. Electr.*, 1974, **QE-10**, No. 4, 450.
- [11] 干福熹; 《光学玻璃》, 科学出版社, 1964年, 231页。
- [12] 徐光宪;《物质结构》,人民教育出版社,1964年,382 页。
- [13] 胡和方,茅森等;《硅酸盐学报》,1978,6, No.3, 115。